You are viewing 1 of your 1 free articles
Chris Mallac explores the current understanding of nerve mobility and the implications for clinicians treating athletes in their care.
Dec 1, 2019; Denver Broncos kicker Brandon McManus (8) kicks the game-winning field goal. Credit: Ron Chenoy-USA TODAY Sports
David Butler and Michael Shacklock coined the terms neuro-dynamics or neuro-mobilizations to describe the concept that impaired neural movement can cause limitations in the range of motion in the body(1-3). Subsequent research has supported the hypothesis that pain-free movement requires nerve tissue to elongate, compress, and glide within the nerve tract or bed(4,5).
When the body moves (such as touching the toes or throwing a ball), several actions occur:
As the joints move, nerves also move. They typically migrate closer to the joint if elongated, or further away from the joint when placed on slack. Adverse neural stress from blocked movement can result in nerve pain and limited motion. Often this manifests as reflexive muscle guarding with limited range of motion in an attempt to protect the nerve from further irritation(5). Typical modes of interference with nerve mobility include squeezing by a protruding spinal disc, compression in a narrow fibro-osseous tunnel, restriction caused by fibrotic tissue that adheres to the outside of the nerve, or bony protuberances which block an adjacent nerve that repeatedly passes by it. Immobilization by casting or bracing causes shortening of the nerve and thus structural changes that can also limit movement; conversely, traction injuries due to excessive ranges of motion may stretch the nerve beyond its typical ability to elongate and result in possible motor impairment (see figures 1-2).
Some common injuries and the associated manifestation of a limited nervous system movement component are:
Performing nerve-tensioning tests helps determine if the symptoms have a neurogenic component. Synchronized movements elongate the nerves and compress nerve roots or peripheral nerves to try to reproduce the patient’s complaints. Pain, pulling, and stretching sensations are all significant findings.
The upper-limb tension tests (ULTTs) focus on the movement of the nerves from the spine that form the brachial plexus. These tests were first described by Robert Elvey - and are, hence, also known as Elvey tests - but are most commonly called ULTTs(16). Place the shoulder, elbow, forearm, wrist, and fingers in a specific position to put stress on a particular nerve (nerve bias). Then, move individual joints or the cervical spine as sensitizers and observe how they improve or worsen the complaints.
Lower limb neurodynamic assessments evaluate the mobility of the spinal nerves that form the sciatic and femoral nerves, which then branch out to the lower limb. These include the straight-leg raise test, slump test (see figure 4), and femoral-nerve test.
A neuro-dynamic assessment is positive if it meets the following three criteria(15):
Other things to keep in mind include(2,3):
If a neuro-dynamic assessment detects restrictions, mobilize the nervous tissue with a procedure known as nerve flossing. Nerve flossing (also known as nerve mobilization) is a specialized way of easing neural tension in different parts of the body(2).
The physiological goals of nerve flossing are as follows:
There are, however, some contraindications to nerve flossing:
What is the difference between a slider and a tensioner movement?
To accurately assess the radial nerve and the posterior interosseous nerve (PIN), place stress on the nerve by positioning the limb in the following order (see figure 5):
A stretch band is used around the shoulder to cause scapular depression. Hold the wrist in flexion, the elbow in extension, and internally rotate the shoulder. Raise the arm into shoulder abduction. Flex the cervical spine laterally to the opposite side to achieve a maximum elongation position and, thus, a tensioner. Athletes can perform this maneuver as part of their home exercise program.
Signs of adverse neural tension are frequently seen in athletes and may contribute to ongoing pain and loss of function. Common neural mobility tests such as the straight leg raise test, slump test, femoral nerve test, and upper limb brachial plexus tests are used for assessment. They may also form the basis of treatment for neural mobility disorders. Nerve flossing techniques such as sliders and tensioners are the mainstream methods for improving neural mobility and restoring full function.
Our international team of qualified experts (see above) spend hours poring over scores of technical journals and medical papers that even the most interested professionals don't have time to read.
For 17 years, we've helped hard-working physiotherapists and sports professionals like you, overwhelmed by the vast amount of new research, bring science to their treatment. Sports Injury Bulletin is the ideal resource for practitioners too busy to cull through all the monthly journals to find meaningful and applicable studies.
*includes 3 coaching manuals
Get Inspired
All the latest techniques and approaches
Sports Injury Bulletin brings together a worldwide panel of experts – including physiotherapists, doctors, researchers and sports scientists. Together we deliver everything you need to help your clients avoid – or recover as quickly as possible from – injuries.
We strip away the scientific jargon and deliver you easy-to-follow training exercises, nutrition tips, psychological strategies and recovery programmes and exercises in plain English.